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The spectral finite element method and equally the dynamic stiffness method use
exponential functions as basis functions. Thus it is possible to find exact solutions to the
homogeneous equations of motion for simple rod, beam, plate and shell structures.
Normally, this restricts the analysis to elements where the excitation is at the element ends.
This study removes the restriction for distributed excitation, that in particular has an
exponential spatial dependence, by the inclusion of the particular solution in the set of basis
functions. These elementary solutions, in turn, build up the solution for an arbitrary
homogeneous random excitation. A numerical implementation for the vibration of a plate,
excited by a turbulent boundary layer flow, is presented. The results compare favourably
with results from conventional modal analysis.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The vibrations induced by fluctuating flow may lead to structural fatigue [1] and may also
be the source of excessive noise. Specifically these fluctuations arise when, at high speeds, a
vehicle is propelled through a fluid or when the fluid is transmitted through a duct or pipe.
Sometimes the pulsating fluid motion is inherent in the process, e.g., fan and aircraft
propellers. In other cases, vortices are created when the fluid motion is not sufficiently
streamlined. In all cases, the fluid inertia forces will become greater than the viscous forces
and a turbulent boundary layer (TBL) develops if the velocity is high enough and the
structure large.
Industries that wish to improve their product’s comfort and reliability by simulation of

the dynamic response often use the finite element method (FEM). The FEM provides a
mathematically stable environment and also allows for a complex geometry of the
modelled structure, both of which are essential for industrial application. However, with
high-frequency excitation, many structures of interest require impossibly large computer
models, which even the rapid evolution of computing power cannot accommodate for
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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within a foreseeable future. This is especially true for distributed random excitation, such
as TBL excitation, for which the forced response problem requires orders of magnitude
more computational effort than the modal analysis of the structure.
The spectral finite element method (SFEM) is a direct FE method, formulated in the

frequency domain, based on a variational formulation for non-conservative motion [2, 3].
The frequency-dependent formulation simplifies the inclusion of frequency-dependent
material characteristics and boundary conditions. The elements are formulated and
assembled as in the standard FEM while the basis functions are exact solutions to the
equations of motion. This reduces the number of degrees of freedom and increases the
accuracy. The SFEM has been used for studies of vibrations in fluid-filled pipes [4], beam
frame works and in beam-stiffened panels in railway cars [5]. An experimental validation
of the SFEM for pipes has been presented in reference [6]. The SFEM has many siblings of
which the most well known are the direct dynamic stiffness method [7, 8], the exact
members method [9, 10] and the spectral element method [11]. The SFEM is special in that
it is based on a variational formulation, similar to the standard FEM. The variational
formulation seems advantageous when approximate shape functions are used and
restraints on motion need be imposed. Otherwise, all the spectral methods seem equivalent
and the choice between any of them is a matter of preference.
Normally, the spectral FEM, and equally the dynamic stiffness method, considers

excitation at the element ends only. Hence, these methods do not seem suitable for
modelling distributed excitation, such as TBL excitation. A remedy for excitation in the
form of a plane pressure wave was however proposed by Langley [7], where, besides the
homogenous solutions to the equation of motion, the particular solution was included in
the set of trial functions. Upon this basis, the nodal equations of motion were formulated
and the forced motion described as a function of excitation amplitude and wavenumber.
Birgersson examined this approach using the dynamic stiffness method and the spectral
FEM [12]. For distributed excitation with a complex exponential spatial dependence, i.e., a
plane wave, the responses were calculated for rods, Euler beams, Timoshenko beams, pre-
stressed Timoshenko beams on Winkler foundations and simply supported plates. At all
stages, the numerical accuracy and stability was confirmed.
The only previous applications for distributed excitations with spectral methods are

those by Langley [7] and more recently by Leung [8]. Leung describes the distributed
excitation with interpolating FE polynomials instead of a superposition of plane wave
excitations. This description may or may not be more efficient than the plane wave
description, depending on the form of excitation. For TBL excitation at high frequencies
the here-proposed method seems more promising.
Turbulence is an intrinsically non-linear process, which can only be described in

statistical terms. The cross-spectral density of the wall pressure is usually the quantity of
interest for stationary vibration response prediction and is generally described by semi-
empirical models. The most common is attributed to Corcos [13], and has been validated
experimentally. It overestimates the wall-pressure cross-spectral density at wavenumbers
below the convective peak [14, 15]. Therefore, a number of different models have evolved
[16], all of which are of a form that allows prediction with the method investigated here.
The cross-spectral density of the response to random excitation is most often given in

terms of a double integral over the surface of the system of the frequency response
functions and the cross-spectral density of the pressure [17]. For standard FE calculations,
the corresponding summation twice over the surface is very costly. In an alternative
approach, given that the excitation is homogenous, the response cross-spectral density is
equally determined by a single integration over all wavenumbers. In this case, the
integrand is given by the excitation wavenumber–frequency spectrum and the ‘‘sensitivity
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function’’, which is the response of the structure to a pressure wave of unit magnitude [17].
It differs from the joint acceptance function in that it does not consider individual modal
responses. The knowledge of this sensitivity function makes it possible to calculate the
response of the structure to TBL excitation. This approach is efficient and more
informative than the standard approach, since the spatial characteristic of the excitation is
directly compared to that of the response.
In what follows, a new method of calculating the response of plates, excited by TBL

flow, is presented. First the response of a plate with simply supported and free edges to a
distributed pressure with a complex exponential dependence is described. A transverse
deflection shape is assumed in order to reduce the governing wave equation to the one-
dimensional case. The model developed has been validated in several ways, as outlined in
section 3. The TBL is described by a Corcos model and the response of a plate structure to
this random excitation is predicted. Finally, the results are favourable compared with
results predicted with conventional modal analysis in section 5.

2. SPECTRAL FINITE ELEMENT FORMULATION FOR DISTRIBUTED SOURCES

2.1. EQUATIONS OF MOTION

Consider a thin isotropic plate of length a; width b and thickness h (Figure 1) excited by
a plane pressure wave with description pðx; y; tÞ ¼ p0e

�iaxxe�iayyeiot: The differential
equation governing the plate vibrations can be written as, cf., reference [7],

D
@4

@x4
þ 2 @2

@x2
@2

@y2
þ @4

@y4

� �
w � Rho2w ¼ p0e

�iaxxe�iayy; ð1Þ

where w is the out-of-plane deflection and R is the mass per unit volume. D ¼
Eh3=ð12ð1� n2ÞÞ is the flexural rigidity with E denoting Young’s modulus and n the
Poisson ratio. Damping losses are accounted for by the inclusion of a complex Young’s
modulus Eð1þ iZÞ: Given simply supported boundary conditions along y ¼ 0 and b; the
deflections can be expanded in the form

wðx; yÞ ¼
X1
n¼1

XnðxÞsinðknyÞ with kn ¼ np
b
: ð2Þ
Figure 1. Thin isotropic plate with free and simply supported edges. Dotted line indicates the coordinate
system used for modal analysis later.
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This solution satisfies the boundary conditions on the two parallel edges y ¼ 0 and b:
Insert equation (2) into equation (1), multiply with sinðkmyÞ and then integrate with
respect to y over the width. Due to orthogonality the left-hand side integral is zero, except
if m ¼ n: It follows that the deflection is given by

D
d4Xn

dx4
� 2k2n

d2Xn

dx2
þ k4nXn

� �
� Rho2Xn ¼ px; ð3Þ

where

px ¼ p0PnðayÞe�iaxx; ð4Þ

PnðayÞ ¼
2

b

Z b

0

e�iayy sinðknyÞ dy: ð5Þ

The solution XnðxÞ to equation (3) represents a complex amplitude and can be written as a
sum of a complementary function and a particular integral in the form

XnðxÞ ¼
X4
i¼1

anie
knix þ XnpðxÞ ¼ eKxCn þ XnpðxÞ; ð6Þ

XnpðxÞ ¼ cne
�iaxx; ð7Þ

where

cn ¼ p0PnðayÞ
ðDa4x þ 2k2nDa2x þ Dk4n � Rho2Þ; ð8Þ

K ¼ ð kn1 kn3 kn2 kn4 Þ; Cn ¼ ðCn1 Cn2 Cn3 Cn4 ÞT: ð9Þ
The convention that the exponential of a vector produces a vector with the exponential of
each term is adopted here. kni are the four roots to the following dispersion relationship for k;

Dk4ni � 2Dk2nk2ni þ Dk4n � Rho2 ¼ 0; ð10Þ
with the roots kn1;n2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þ k2

p
and kn3;n4 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n � k2

p
; k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rho2=D

p
: To ensure

numerical stability, when eknilx or e�knilx is large, solution (6) is scaled, see reference [5]:

XnðxÞ ¼ eKx�KplxCn þ cne
�iaxx; ð11Þ

where

lx ¼ a=2; ð12Þ

ðKpÞi ¼
�Ki; ReðKiÞ40;
Ki; else:

(
ð13Þ

The unknown constants Cni are related to the boundary conditions at the ends of the plate by

Xnð�lxÞ
X 0

nð�lxÞ
XnðþlxÞ
X 0

nðþlxÞ

0
BBB@

1
CCCA ¼

eKð�lxÞ�Kplx

K: 	 eKð�lxÞ�Kplx

eKðþlxÞ�Kplx

K: 	 eKðþlxÞ�Kplx

0
BBBB@

1
CCCCA

Cn1

Cn2

Cn3

Cn4

0
BBB@

1
CCCAþ

Xnpð�lxÞ
�iaxXnpð�lxÞ

XnpðþlxÞ
�iaxXnpðþlxÞ

0
BBB@

1
CCCA; ð14Þ

where :	 denotes element-wise multiplication (as in MATLAB) and a prime denotes
differentiation with respect to x: Equation (14) can be solved for Cn;

Cn ¼ AðWn �WncÞ; ð15Þ
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where

A ¼

eKð�lxÞ�Kplx

K: 	 eKð�lxÞ�Kplx

eKðþlxÞ�Kplx

K: 	 eKðþlxÞ�Kplx

0
BBBB@

1
CCCCA

�1

; Wn ¼

Xnð�lxÞ
X 0

nð�lxÞ
XnðþlxÞ
X 0

nðþlxÞ

0
BBB@

1
CCCA; Wnc ¼

Xnpð�lxÞ
�iaxXnpð�lxÞ

XnpðþlxÞ
�iaxXnpðþlxÞ

0
BBB@

1
CCCA: ð16Þ

Insert equation (15) into equation (11) to obtain the complex amplitude XnðxÞ;
XnðxÞ ¼ eKx�KplxAðWn �WncÞ þ cne

�iaxx ¼ eKx�KplxAWn þ cne
aKx�aKplxWnp; ð17Þ

where

K ¼ ð kn1 kn3 kn2 kn4 Þ;

aK ¼ ðK �iax Þ; aKp ¼ ðKp 0 Þ;

Wnp ¼ ðWnp1 Wnp2 . . . Wnp5 ÞT; ðWnpÞ1;...;4 ¼ �AWnc=cn; ðWnpÞ5 ¼ 1: ð18Þ

Equations (17) and (2) together give the exact shape functions to the governing differential
equation (1) for all plane travelling pressure waves of the form p0e

�iaxxe�iayyeiot:

2.2. VARIATIONAL PRINCIPLE FOR DISTRIBUTED PRESSURE

2.2.1. Plate formulation

For free wave motion and with damping neglected, Hamilton’s principle in the time
domain applies Z t2

t1

dðU � TÞ dt ¼
Z t2

t1

dðLÞ dt ¼ 0; ð19Þ

where T and U are the kinetic and elastic strain energies. The functional ðU � TÞ will here
be referred to as virtual work and later as the Lagrangian L: To study wave propagation in
the frequency domain, assuming a harmonic and stationary time dependence, one lets
t1;2 ! �1 and apply Parseval’s identity. The governing equations are linear and thus the
different frequency components in the resulting integral do not couple with each other.
The integrand is zero for all frequencies and the virtual work is stationary for each
frequency. For free harmonic vibrations of the form eiot; the virtual work of the element
for the out-of-plane displacement is given by the following bi-linear functional [18, p. 35]:

L ¼
Z lx

�lx

dx

Z b

0

h3

12
ðe	ÞTDe � Rho2w	w

� �
dy; ð20Þ

where e and the stiffness matrix D are defined as

e ¼ @2w

@x2
@2w

@y2
2
@2w

@x@y

� �T
; D ¼ 12

h3

D Dn 0

Dn D 0

0 0 Dð1� nÞ=2

0
B@

1
CA: ð21Þ

The asterisk denotes the complex conjugate and wðx; y;oÞ is the transverse
displacement. With dissipative losses, equation (20) no longer has a stationary minimum
for the displacement functions. As discussed by Finnveden [5], these losses may be
attributed by employing a variational principle similar to that of Hamilton. Thus, the bi-
linear forms in the displacement w and its complex conjugate w	 are replaced with bi-linear
forms in the displacement w and in the complex conjugates of the displacement wa in an
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adjoint negatively damped system [2, 3]. This is conceptually more complex but the
approach requires no extra calculation effort. The virtual work of the distributed pressure
pðx; yÞ is also included, as in reference [12] for example, producing the Lagrangian

L ¼
Z lx

�lx

dx

Z b

0

h3

12
ðeaÞT

De � Rho2waw � pnw � pwa

� �
dy: ð22Þ

2.2.2. Trial functions for plate with two opposite edges simply supported

The displacement functions and also the trial functions, given simply supported
boundary conditions, are expressed by equation (2) as a modal sum. The displacement
functions for the adjoint system are similarly given as a modal sum.

wðx; yÞ ¼
X1
n¼1

XnðxÞsinðknyÞ; where XnðxÞ ¼ eKx�KplxAWn þ cne
aKx�aKplxWnp; ð23Þ

waðx; yÞ ¼
X1
n¼1

X a
n ðxÞsinðknyÞ; where X a

n ðxÞ ¼ eKx�KplxAWa
n þ cne

aKx�aKplxWnp: ð24Þ

Equation (24) defines the test functions that are to be varied to find the displacement
functions, described by equation (23). These functions are substituted into equation (22)
and the integral over y is evaluated. Due to orthogonality, the Lagrangian L is reduced to
a number of one-dimensional Ln: For each of these, the first variation with respect to the
test functions has to be zero. The pressure, described by pðx; y; tÞ ¼ p0e

�iaxxe�iayyeiot; is
substituted into the Lagrangian. The procedure outlined is similar to a Galerkin
procedure, cf. reference [19],

Ln ¼ b

2

Z lx

�lx

ðd2X a
n =dx2ÞTB1ðd2Xn=dx2Þ þ ðd2X a

n =dx2ÞTB2ðXnÞ
n

þ ðX a
n Þ
T

B2ðd2Xn=dx2Þ þ ðdX a
n =dxÞTB3ðdXn=dxÞ

þ ðX a
n Þ
T

B4ðXnÞ � ðX a
n Þ
T

px � p	
xðXnÞ

o
dx; ð25Þ

where B1 ¼ D; B2 ¼ �Dnk2n; B3 ¼ 2Dð1� nÞk2n and B4 ¼ Dk4n � Rho2:

2.2.3. Derivation of nodal displacement

Equation (25) is evaluated by substituting the functions Xn and X a
n ; and their respective

derivatives, into it. By requiring that the first variation of the Lagrangian with respect to
the variational parameters Wa

n is zero, a system of equations for the nodal displacement
Wn is found.

DnWn ¼ Fn; ð26Þ

where the dynamic stiffness matrix Dn and the forcing Fn are detailed in Appendix A
together with a derivation of the quantities. The element formulation given by equation
(26) is exact, which means that there is no need for numerical quadrature. The formulation
applies equally for other boundary conditions at the free edges, such as clamped, simply
supported, etc. The dynamic stiffness matrix Dn does not depend on the excitation and for
a general source, described by a superposition of plane wave pressure excitations, it is
therefore only the nodal force vector Fn that needs to be recalculated.
Solving equation (26) gives the nodal displacements Wn of the structure, when excited

by a plane pressure wave of the form p0e
�ias ¼ p0e

�iaxxe�iayy: Given Wn; equations (17)
and (2) together give the total response of the structure at any position r:
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For future reference the response to a pressure wave with p0 ¼ 1 N=m2 will here be
denoted by the sensitivity function Gðr; a;oÞ: This function may also be expressed as an
integral

Gðr; a;oÞ ¼
Z

R

Hðr; s;oÞe�ias ds; ð27Þ

where Hðr; s;oÞ is the displacement at location r resulting from a point force of unit
magnitude applied at location s:

3. VALIDATION OF THE DEVELOPED MODELS

3.1. COMPARISON WITH THE DYNAMIC STIFFNESS METHOD (DSM)

With the DSM it is possible to describe the response to distributed pressure with
exponential dependence, see reference [7] for a plate and reference [12] for a rod, various
beams, including for example pre-stressed and elastic foundation, and plates. For all these
cases the DSM and SFEM produce the same system of equations for distributed pressure.
The way the methods calculate the dynamic stiffness matrices differ and because of this,
there are some numerical differences for large and small Helmholtz numbers klx; as
discussed in reference [12].

3.2. RESPONSE TO A POINT FORCE

To validate the expressions derived so far and to develop an understanding for the
convergence of results for arbitrary excitation, the response of a simply supported plate to
a point force was investigated. The simply supported plate is detailed in section 5.1. The
point force f is approximated with a finite spatial Fourier series and the response to each
term in this series is calculated with the models developed. Superposition is valid as wave
equation (1) is linear and the final response is a sum of all responses. This response is
compared to the exact response calculated with a dynamic stiffness method, outlined in
Appendix B.
Similar to the equations of motion of the plate, the force is decomposed into a series of

half sine waves in the y direction. In the x direction the force is described by an exponential
Fourier series:

f ðx; yÞ ¼ F0dðx � xsÞdðy � ysÞ �
F0

2lx

XM 0

m0¼�M0
ei2m0px=2lxe�i2m0pxs=2lx

2

b

XN 0

n0¼1
sin

n0py

b

� �
sin

n0pys

b

� �
;

ð28Þ

for large values of M 0 and N 0: The convergence of the series is illustrated in Figure 2,
where a point force of unit magnitude, applied at xs ¼ 0 and ys ¼ b=3; is approximated
with N 0 ¼ 10 and either M 0 ¼ 1 (left) or M 0 ¼ 5 (right).
Equation (28) is substituted as the pressure pðx; yÞ into equation (1). For a given m0 and

transverse mode n; px ¼ F0ðsinðnpys=bÞe�i2m0pxs=2lx=lxbÞe�ið2m0p=2lxÞx: Figure 3 shows the
resulting plate mean square velocity with the described pressure excitation and also the
exact response to the point force calculated from equation (B2). The relative error in
velocity decreases as more terms are considered, see Figure 4. With M 0 ¼ 100; i.e.,
considering 201 terms, the relative error is less than 0�1%. The relative error depends on
the wavenumber klx and increases with frequency as increasing higher order modes are
necessary to describe the response.



Figure 2. Point force of unit magnitude approximated as a distributed pressure. Left, M 0 ¼ 1; N 0 ¼ 10: Right,
M 0 ¼ 5; N 0 ¼ 10:
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Figure 3. Mean square plate velocity: (}) point force and equally distributed excitation with M 0 ¼ 100; (– –)
distributed excitation with M 0 ¼ 5; (� � � � � �) distributed excitation with M 0 ¼ 1:
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4. PLATE RESPONSE TO TBL EXCITATION

In this section the cross-spectral density of the response is expressed as an integral of the
sensitivity function and the cross-spectral density of the turbulent boundary layer (TBL)
wall pressure. The sensitivity function of the plate structure was calculated in section 2.
The integral usually has to be calculated numerically, which decreases efficiency. By expressing

the cross-spectral density of the TBL wall pressure as a Fourier series, instead of using the
Fourier transform, a new approach is derived. The integral is replaced by a summation.

4.1. CROSS-SPECTRAL DENSITY OF THE PRESSURE

The TBL wall pressure is described by the Corcos model [13]. From a curve fit for
the narrow-band spatial correlation between wall pressures, Corcos obtained the
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Figure 4. Relative error of mean square plate velocity: (}) distributed excitation with M 0 ¼ 100; (– –)
distributed excitation with M 0 ¼ 5; (� � � � � �) distributed excitation with M 0 ¼ 1:
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cross-spectral density of the pressure

hp	ðxs; ys;oÞpðx0
s; y0

s;oÞi ð29Þ

¼ Sppðxx; xy;oÞ ¼ FppðoÞexp �cx

oxx

Uc

����
����

� �
exp �cy

oxy

Uc

����
����

� �
exp

ioxx

Uc

� �
; ð30Þ

where

xx ¼ xs � x0
s and xy ¼ ys � y0

s: ð31Þ

h i denotes statistical expectation, cx and cy are constants describing the spatial coherence
of the wall pressure field, in the longitudinal and transverse directions, respectively, and Uc

is the convection velocity.

4.2. FOURIER TRANSFORM

It is assumed that the distributed random excitation is stationary in time. Considering
the case when there are N separate input forces at position si; the cross-spectral density
between the response at position r1 and the response at position r2 is given by Newland
[7, Chapter 16] as

Swwðr1; r2;oÞ ¼
XN

j¼1

XN

k¼1
Hnðr1; sj;oÞHðr2; sk;oÞSff ðsj; sk;oÞ; ð32Þ

where

r ¼ ð x y ÞT; s1 ¼ ð xs ys ÞT; s2 ¼ ð x0
s y0

s Þ
T: ð33Þ

Sff ðsj; sk;oÞ is the force cross-spectral density andHðr; s;oÞ is the displacement at location
r resulting from a point force of unit magnitude applied at location s:When the number of
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input forces becomes infinite, as is the case for a fluctuating pressure field, then the
summations become integrals over the surface,

Swwðr1; r2;oÞ ¼
Z

R

Z
R

Hnðr1; s1;oÞHðr2; s2;oÞSppðs1; s2;oÞds1 ds2: ð34Þ

This equation gives the cross-spectral density between the responses wðr1;oÞ and wðr2;oÞ
in terms of a double integral over the surface of the system of the frequency response
functions and the cross-spectral density of the pressure Sppðs1; s2;oÞ:
Now, consider the case when the distributed excitation pðs; tÞ is a sample function from

a process that is homogeneous in space. Then the cross-spectral density Sppðsj; sk;oÞ is
related to the wavenumber cross-spectral density SPPða;oÞ by

Sppðsj; sk;oÞ ¼
Z
1

SPPða;oÞeiðaðsk�sjÞÞ da; ð35Þ

where a is a wave vector. Substituting expression (35) into equation (34) and changing the
order of integration gives

Swwðr1; r2;oÞ ¼
Z
1

Gnðr1;�a;oÞGðr2;�a;oÞSPPða;oÞ da; ð36Þ

where the sensitivity function Gðr; a;oÞ is defined by equation (27) as the response to a
plane pressure wave of the form p0e

�ias; with p0 ¼ 1 N=m2:

4.3. FOURIER SERIES

Equation (34) will be evaluated. The cross-spectral density of the pressure Sppðxx; xy;oÞ
described by equation (30) is expressed as an exponential Fourier series. The period is
twice the length of the plate as the integral of xx and xy needs to be evaluated in the
interval �2lx; . . . ; 2lxð¼ �a; . . . ; aÞ and �b; . . . ; b: Outside this interval, the cross-spectral
density can be made periodic because any existing pressure outside the integration limits
will not influence the result. Upon this basis, the cross-spectral density is given by

Sppðxx; xy;oÞ ¼ FppðoÞ
X
m0

SPPxðam0 Þeiam0xx
X

n0
SPPyðan0 Þeian0xy ; ð37Þ

where

am0 ¼ 2pm0=2a; an0 ¼ 2pn0=2b: ð38Þ

For the Corcos model in equation (37), the Fourier coefficients SPPxðam0 Þ and SPPyðan0 Þ are
given by

SPPxðam0 Þ ¼ 1

2a

Z a

�a

e�cxojxxj=UceioðxxÞ=Uce�iam0xx dxx ¼ 1

2a

1� e�d1a

d1
þ e

d2a � 1
d2

� �
;

d1 ¼ cxo=Uc þ io=Uc � iam0 ; d2 ¼ �cxo=Uc þ io=Uc � iam0 ; ð39Þ

SPPyðan0 Þ ¼
1

2b

Z b

�b

e�cyojxyj=Uce�ian0xy dxy ¼ 1

2b

1� e�d3b

d3
þ e

d4b � 1
d4

� �
; ð40Þ

d3 ¼ cyo=Uc � ian0 ; d4 ¼ �cyo=Uc � ian0 :
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The series in equation (37) is inserted into equation (34) and the order of summation and
integration interchanged:

Swwðr1; r2;oÞ ¼
Z

R

Z
R

Hnðr1; s1;oÞHðr2; s2;oÞFppðoÞ
X
m0

SPPxðam0 Þeiam0xx

�
X

n0
SPPyðan0 Þeian0xy ds1 ds2

¼ FppðoÞ
X
m0

X
n0

SPPðam0n0 Þ
Z

R

Z
R

ðHðr1; s1;oÞe�iam0xse�ian0ysÞn

� ðHðr2; s2;oÞe�iam0x0se�ian0y
0
sÞ ds1 ds2

¼ FppðoÞ
X
m0

X
n0

SPPðam0n0 ÞGnðr1; am0n0 ;oÞGðr2; am0n0 ;oÞ; ð41Þ

where am0n0 ¼ ðam0 an0 Þ and SPPðam0n0 Þ ¼ SPPxðam0 ÞSPPyðan0 Þ: The sensitivity function
Gðr; a;oÞ is defined by equation (27). Only a finite number of terms will be considered
later, e.g., m ¼ �M 0; . . . ;M 0: Given the simply supported plate, Gðr; a;oÞ is described in
section 2 as a sum of the transverse sinusoidal modes sinðknyÞ and therefore a complete
expression for the auto-spectral density of the response is

Swwðr;oÞ ¼ FppðoÞ
XM 0

m0¼�M 0

XN 0

n0¼�N 0
SPPðam0n0 Þ

XN

n¼1
Gnðx; am0n0 ;oÞsinðknyÞ

�����
�����
2

: ð42Þ

4.4. MODAL APPROACH

For comparison, the total response of a simply supported plate to a harmonic point
force F0e

iot at s1 can be expressed as a modal summation

wðrÞ ¼
XM

m¼�M

XN

n¼�N

F0 Cmnðs1Þ
Rhðo2mnð1þ iZÞ � o2ÞCmnðrÞ; ð43Þ

where

Cmnðxs; ysÞ ¼
2ffiffiffiffiffi
ab

p sinðkmxsÞsinðknysÞ;

km ¼ mp
a
; kn ¼ np

b
and omn ¼

ffiffiffiffiffiffi
D0

rh

s
ðk2m þ k2nÞ: ð44Þ

The function H in equation (34) is the response to point force excitation with unit
magnitude. Substituting the appropriate expression for H; here described by equation
(43), into equation (34) gives the auto-spectral density of the displacement as

Swwðr;oÞ ¼
XP

p¼�P

XQ

q¼�Q

XM
m¼�M

XN

n¼�N

Z
R

Z
R

Cmnðs1Þ
Rhðo2mnð1þ iZÞ � o2ÞCmnðrÞ
� �	

Cpqðs2Þ
Rhðo2pqð1þ iZÞ � o2ÞCpqðrÞ
 !

Sppðs1; s2;oÞ ds1 ds2: ð45Þ

Note that equation (45) requires a double summation over modes (assuming the integral
can be evaluated analytically), whereas equation (42) only requires a single summation
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over the transverse modes and a single summation over terms from the Fourier series
expansion of the pressure.
In case the integral in equation (45) is calculated numerically, the order of summation

and integration can be interchanged, replacing the double summation over modes with
two single summations instead. The computational effort increases rapidly though, as the
double integral is replaced by a double summation over excitation points. Hence this case
was not further investigated here.
With the assumption that the modes are not coupled by the forcing field, equation (45)

may be reduced. This is often done in literature, see for example references [20, 21], but the
approximation is not always recommended. A study by Dahlberg [22] demonstrates a
relative error for the r.m.s beam deflection of up to 60%, when cross-modal terms were
neglected. The frequency ranges investigated also covered many resonance frequencies.
In the case of a simply supported plate, the double integral over the surface of the plate

can be evaluated analytically and in order to compare the results as exactly as possible
with the spectral FEM, it is necessary to include the cross-modal terms. In section 5 the
response given by the modal analysis was taken as the datum solution. The convergence
was verified up to four significant digits at 2000Hz.

5. NUMERICAL INVESTIGATION

5.1. NUMERICAL TEST CASE

The foregoing theory was applied to a simply supported aluminium plate with
properties as follows: dimensions a ¼ 768mm, b ¼ 328mm, h ¼ 1�6mm, Z ¼ 0�02;
E ¼ 7�1� 1010 N/m2, n ¼ 0�3; R ¼ 2750 kg/m3. The response was calculated at point r

with co-ordinates x ¼ 0�1m and y ¼ 0�2m, if not otherwise stated. The TBL wall pressure
is modelled with equation (30), Uc ¼ 92m/s, cx ¼ 0�116; cy ¼ 0�7 and Fppð f Þ ¼ 1 Pa2/Hz.

5.2. SENSITIVITY FUNCTION AND MATCHING OF WAVENUMBERS

The aim is to predict the auto-spectral density of the displacement Sww of the plate.
According to equation (41) it is given as a summation of terms of the form
SPPðam0n0 ÞjGðr; am0n0 ;oÞj2; where SPP describes the excitation and G the response of the
structure. These quantities will be investigated separately. At a given frequency, Sww is
given by the multiplication in the wavenumber domain of these with each other and a
constant FppðoÞ:
Whenever the structural wavenumber kmn of mode Cmn matches the wavenumber of the

excitation am0n0 ; the modal response increases (cf., coincidence effect). If the frequency of
the excitation is close to a resonance frequency fmn of the structural mode Cmn and the
excitation is chosen as am0¼m;n0¼n; the response of the plate is greatly increased. All natural
frequencies up to 1000Hz are listed in Table 1.
In Figure 5 (left) the squared magnitude response of the structure to a distributed

pressure p0e
�iam0xe�ian0y; with p0 ¼ 1 N=m2; is examined at 201Hz. Both the modes

Cm¼5;n¼1 and Cm¼3;n¼2 have natural frequencies close to 201Hz and their structural
wavenumbers closely match the wavenumber of the excitation am0¼5;n0¼1 and am0¼3;n0¼2
respectively. These wavenumbers are indicated in the figure. Furthermore, all first order
transverse modes respond noticeably to wave excitation with am0;n0¼0; i.e., a plane pressure
wave travelling in the x direction, and so also mode Cm¼5;n¼1: All even numbered



Table 1

All flexural natural frequencies below 1000Hz of the simply supported plate, described in

section 5.1

fmn (Hz) n

1 2 3 4 5

m ¼ 1 42 150 330 581 905
m ¼ 2 62 170 349 601 924
m ¼ 3 95 203 382 634 957
m ¼ 4 141 249 428 680
m ¼ 5 200 308 487 739
m ¼ 6 272 380 559 811
m ¼ 7 357 464 644 896
m ¼ 8 455 563 743 994
m ¼ 9 567 674 854
m ¼ 10 691 799 979
m ¼ 11 829 937
m ¼ 12 979

Note: n denotes transverse order in the y direction and m the longitudinal order.
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981Hz.
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transverse modes on the other hand, e.g., Cm¼3;n¼2; are not excited as Pn¼2;4;...ðay ¼ 0Þ ¼ 0;
see equation (5).
At higher frequencies other modes dominate the response. Both modes Cm¼12;n¼1 and

Cm¼10;n¼3 have natural frequencies fmn close to 981Hz and respond strongly at this
frequency when excited by am0¼12;n0¼1 and am0¼10;n0¼3 respectively, cf., Figure 5 (right).
What is especially of interest here is how well these responses couple with the Fourier

series expansion of the pressure SPPðam0n0 Þ: It is maximum at convective wavenumbers
close to am0 ¼ o=Uc and also at wavenumbers an0 ¼ 0; decreasing steadily with increasing
an0 ; see Figure 6. Modes Cm;n¼1 are more likely to couple well as they respond strongly to
wave excitation with am0;n0¼0;1:
The aerodynamic coincidence, occurring when the bending and the convective wave

speeds are equal, is at 546�4Hz. Modes with resonant frequencies close to this frequency
will respond greatly, as can be seen later in the response of, for example, mode Cm¼9;n¼1
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with natural frequency fmn ¼ 567Hz in Figure 7. The modes Cm¼8;n¼2 andCm¼6;n¼3 do not
respond as much, because they do not couple well to a distributed pressure with
exponential dependence am0;n0¼0 or am0;n0¼1: For low frequencies the energy of the TBL
excitation is mainly at these low wavenumbers, cf., Figure 6. With higher frequencies the
spatial correlation of the TBL excitation in the y direction decreases rapidly and the
Fourier series expansion spectra become flatter. The wavenumber description starts to
resemble ‘‘rain on the roof’’ in the y direction and hence all transverse modes in the y

direction will start to couple equally well to SPPðam0n0 Þ: In the x direction a similar
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phenomenon can be observed, but the spatial correlation decreases less rapidly with
frequency in the direction of the flow, cf., Corcos formulation with cx5cy:
In Figures 5 and 6 values are only shown for positive am0 and an0 : Negative values of an0

are not shown due to symmetry with respect to an0¼0; whereas negative values of am0 were
excluded as SPPðam0n0 Þ has its maximum around the convective peak, i.e., am0 � o=Uc; and
is quite small for negative values of am0 : In the next section, though, all am0;n0 were
considered.
If the structure is small (and the frequency low), the response of separate modes

can be analyzed in the wavenumber domain and directly compared with the TBL
excitation. For large structures this approach is not very fruitful, as hundreds of
modes will be present even at low frequencies. Of more interest then is to directly compare
the spatial characteristics of the excitation to that of the response in the wavenumber
domain.

5.3. COMPARISON WITH MODAL ANALYSIS

Figure 7 shows the calculated velocity response to TBL excitation using spectral FE and
the data given in section 5.1. This result was compared with results from a modal analysis,
outlined in section 4.4 and also initially (not shown here) with an approximate modal
procedure, see reference [20]. Davies [20] assumption that cxðyÞUc=o{lx;ðyÞ was here only
valid above approximately 300Hz. Otherwise, the methods agreed well, with small relative
differences.
From Figure 7 it is observed that, if the highest wavenumber aM 0;N0 ; describing the TBL

excitation, is less than the structural wavenumber of the higher order modes CM;N that
have cut on, the resulting velocity response is underestimated. Hence M 0and N 0 should be
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chosen considering the structural wavenumbers of all higher order cut-on modes present at
2000Hz. Here, this was satisfied by M 0 ¼ 20 and N 0 ¼ 10:
Figure 8 compares the relative error between the results calculated with the spectral

FEM. As a datum solution, with four significant digits, the response given by the modal
analysis was taken. To decrease the relative error below 0�1%, not only do the structural
wavenumbers at 2000Hz have to be considered, but also the wavenumber description of
the TBL excitation, which at 2000Hz requires approximately M 0 ¼ 50 and N 0 ¼ 30;
due to the flatness of its spectra in the wavenumber domain. With this choice of
parameters, the spectral FEM produced a result that had more significant digits than
the datum solution and further comparison was meaningless. Also shown is the relative
error of approximately 10–20% introduced if cross-modes are neglected in the modal
analysis.
The spectral FEM was efficient compared to the modal analysis approach and only the

neglect of cross-modes in the latter made the methods comparable in computational
efficiency.

6. CONCLUSIONS

Previously, much attention had been directed to investigate the response of structures to
TBL excitation. A new approach to this problem has been presented here which
investigates the response in the wavenumber domain. First, the response of a plate to a
distributed excitation with a complex exponential spatial dependence, i.e., a plane pressure
wave, is calculated with the spectral FEM. The use of a particular integral allows
for an exact calculation of this response, without recourse to modal analysis. Then the
cross-spectral density of the TBL wall pressure cross-correlation is expressed as a finite
exponential Fourier series. The structural response to each term in this series can be
calculated with the spectral FEM and the total response is given by superposition.
Hence using this approach the vibrational response of the plate to TBL excitation is
determined.
The method presented is efficient compared to a modal analysis approach. The neglect

of cross-modes would make the methods comparable in efficiency, but introduce an error
of the order of 10–20% for the predicted auto-spectral density of the velocity in the
frequency range investigated.
With the approach described, a direct comparison is possible between the spatial

characteristics of the TBL excitation and of the structural response. This comparison
reveals which modes will be excited more than others and how changes to the structure, or
the TBL excitation, will influence the response of the structure. Many different
descriptions of the TBL wall pressure are discussed in the literature, see reference [15],
and these can be included in the formulation as long as they have a Fourier series
expansion in the wavenumber domain.
The spectral FEM allows the equations of motion of a structure to be assembled

and solved by using standard techniques of the finite element method. At present,
the possibility of clamped boundary conditions along all edges is being investigated,
where the governing wave equations are formulated with the methods outlined in
reference [23].
The presented method should also apply to other complex structures. Finnveden et al.

[24], for example, calculate the pipe response to a fully developed internal turbulent
flow. The results are in excellent agreement with measurement results taken from
reference [14].
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APPENDIX A: EVALUATION OF THE LAGRANGIAN

Equation (25) is evaluated by substituting the functions Xn and X a
n (defined by

equations (23) and (24)) and their respective derivatives into it. The different terms are
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similar and can be evaluated separately and then added together. Here a general term in
equation (25) is evaluated to show the procedure:

Z lx

�lx

ðdrX a
n =dxrÞTBiðds

Xn=dxsÞ dx

¼ Bi

Z lx

�lx

fððK:^rÞ: 	 eKx�KplxAWa
n þ cnðaK:

^rÞ: 	 eaKx�aKplxWnpÞT

� ððK:^sÞ: 	 eKx�KplxAWn þ cnðaK:
^sÞ: 	 eaKx�aKplxWnpÞg dx

¼ Bi

Z lx

�lx

fððK:^rÞ: 	 eKx�KplxAWa
nÞ
TððK:^sÞ: 	 eKx�KplxAWnÞ

þ ððK:^rÞ: 	 eKx�KplxAWa
nÞ
TðcnðaK:

^sÞ: 	 eaKx�aKplxWnpÞg dx þ R

¼ WaT
n ATBiððK:^rÞTðK:^sÞÞ: 	

Z lx

�lx

ðeKx�KplxÞTeKx�Kplx dx

� �
AWn

þWaT
n ATBiððK:^rÞTðaK:

^sÞÞ: 	
Z lx

�lx

ðeKx�KplxÞTeaKx�aKplx dx

� �
Wnpcn þ R; ðA1Þ

where ð:	Þ and ð:^Þ denote element-wise multiplication and power respectively (as in
MATLAB). ðv1v2ÞT ¼ vT2 v

T
1 was used and also that dot products are commutative. R

contains terms that do not depend on Wa
n: The first variation of the Lagrangian with

respect to the test functions X a
n is to be zero. Because the terms in R do not contribute to

this variation, they are eliminated. All the terms given in equation (25) are evaluated in this
way and added to get the final expression. The first variation of this new Lagrangian with
respect to WaT

n is to be zero, producing the following system of linear equations in the
nodal displacement Wn the first of which is just equation (26):

DnWn ¼ Fn; ðA2Þ

Dn ¼ AT
b

2
ðQ1: 	 EIðK;Kp;K;KpÞÞA; ðA3Þ

Fn ¼ �AT
b

2
ðQ2: 	 EIðK;Kp; aK; aKpÞÞWnpcn þ AT

b

2
EIðK;Kp;�iax; 0Þp0PnðayÞ; ðA4Þ

where

Q1 ¼B1ðK:^2ÞTðK:^2Þ þ B2ðK:^2ÞTðK:^0Þ
þ B2ðK:^0ÞTðK:^2Þ þ B3ðK:^1ÞTðK:^1Þ þ B4ðK:^0ÞTðK:^0Þ;

Q2 ¼B1ðK:^2ÞTðaK:
^2Þ þ B2ðK:^2ÞTðaK:

^0Þ
þ B2ðK:^0ÞTðaK:

^2Þ þ B3ðK:^1ÞTðaK:
^1Þ þ B4ðK:^0ÞTðaK:

^0Þ: ðA5Þ

The matrix generating function EI is defined as

EIðK;Kp; aK; aKpÞ ¼
Z lx

�lx

ðeKx�KplxÞTðeaKx�aKplxÞ dx ðA6Þ
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so that its entries are given by

ðEIÞij ¼ððeðKÞiðþlxÞ�ðKpÞi lxÞðeðaKÞjðþlxÞ�ðaKpÞj lxÞ
� ðeðKÞið�lxÞ�ðKpÞi lxÞðeðaKÞjð�lxÞ�ðaKpÞj lxÞÞ=ððKÞi þ ðaKÞjÞ: ðA7Þ

APPENDIX B: DYNAMIC STIFFNESS METHOD FOR A SIMPLY SUPPORTED PLATE

For a plate excited by a harmonic point force F0e
iot at s1 ¼ ðxs; ysÞ; instead of a

distributed force as in equation (3), the governing wave equation is given by

D
d4Xn

dx4
� 2k2n

d2Xn

dx2
þ k4nXn

� �
� Rho2Xn ¼ 2F0

b
sinðknysÞdðx � xsÞ: ðB1Þ

Except at xs; the solution is given by the complementary solution, detailed in equation (6),

Xn ¼
Xn� ¼

P4
i¼1 Anie

knix; x5xs;

Xnþ ¼
P4

i¼1 Bnie
kniðx�aÞ; x > xs;

(
ðB2Þ

where a is the length of the plate. The boundary conditions for a simply supported plate at
x ¼ 0 and a are

Xn ¼ d2Xn=dx2 ¼ 0: ðB3Þ
At location xs; the displacement and its first and second derivatives are continuous, i.e.,

Xn� ¼ Xnþ; dXn�=dx ¼ dXnþ=dx; d2Xn�=dx2 ¼ d2Xnþ=dx2 for x ¼ xs: ðB4Þ
Another continuity condition is obtained by integrating equation (B1) with respect to x

from xs � e to xs þ e for infinitesimal e:

½d3Xnþ=dx3 � d3Xn�=dx3�x¼xs
¼ 2F0 sinðknysÞ

Db
: ðB5Þ

Given these conditions it is possible to solve the eight unknown parameters Ani and Bni

in equation (B2) and thus describe the motion of the plate. An alternative approach is to
use the result by Langley [7, equation (13)] to describe the motion of one plate element and
then couple two plate elements.
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